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Abstract. Acoustic point defect states in the three-dimensional simple-cubic arrays of water spheres em-
bedded in a mercury host are studied. Two kinds of defects are introduced, one is a sphere defect created
by changing its radius, and another is a cubic defect obtained by replacing one of the spheres with a cube.
The results show that a defect band appears in the band gap of the perfect crystals. The calculations show
that the defect modes are localized around the defect. The influence of the filling fraction and the geometry
of the defect on the defect modes are investigated in detail.

PACS. 43.20.+g General linear acoustics – 62.60.+v Acoustical properties of liquids – 61.72.Ji Point
defects (vacancies, interstitials, color centers, etc.) and defect clusters

In recent years, the propagation of acoustic or elastic
waves in periodic and random elastic composite materials,
known as “phononic band gap materials” or “phononic
crystals”, has received a great deal of attention [1–24].
Much effort has been focused on the search for large band
gaps in the acoustic or elastic band structure, in which
sound and vibration are all prohibited. The motivation
for these studies is to better understand the Anderson lo-
calization of sound and vibrations in inhomogeneous me-
dia [3], as well as their numerous engineering applications
such as frequency filters, vibrationless environments for
high-precision mechanical systems or the design of new
transducers.

In the two dimensional (2D) and three dimensional
(3D) periodic composite media with solid host, the lon-
gitudinal and transverse vibrations are always coupled,
which makes the nature of the eigenmodes and corre-
sponding computation much more complicated. The sit-
uation can be simplified if the host media is gas and/or
liquid, in which only longitudinal waves can propagate,
no matter whether the system is 2D or 3D. Large acous-
tic (sonic) band gaps have been found in the 2D and 3D
binary liquid and gas systems, such as liquid-liquid sys-
tems [4–7], liquid-gas systems [8,9], and solid inclusions
inside air [10–15]. Although there have been many works
trying to determine the optimal conditions for the appear-
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ance of acoustic wave band gaps, only few works have
been related to the defects and disorder-induced phenom-
ena in 2D and 3D phononic crystals. Sigalas [16,17] has
treated point and linear defect states in 2D phononic crys-
tals composed of solid cylinders in air or in a solid host by
means of the plane-wave expansion (PWE) method. The
results show that the defect in those structures creates lo-
calized states inside the band gap. Kafesaki et al. [18,19]
and Khelif et al. [20] have studied linear wave-guides in
2D elastic wave band gap materials made up of either
fluid or solid constituents. The calculations of band struc-
ture and transmission coefficient were performed by us-
ing PWE method and the finite difference time domain
(FDTD) method, respectively. They studied the guiding
of elastic waves through linear defect modes created by
a line of defects in a 2D elastic wave band gap material,
and found that these defects could act as waveguides in
the frequency regime of the gap. Miyashita et al. [21] also
reported the numerical investigations of transmission and
waveguide properties of 2D sonic crystals by the FDTD
method. The localization phenomena in linear and point
defects were also observed experimentally [22]. However,
within all the above works [16–22], only circular cross-
section of cylinders were considered, and the point de-
fects were created by changing the radius of a cylinder
or simply removing the whole cylinder. Recently, we have
studied the 2D defect problem by using different geometry
of cross section from the regular cylinders to introduce the



266 The European Physical Journal B

point defect. The results show that the defect states not
only relate to the filling fraction of defect, but also to its
geometry [23].

For the defect states of 3D phononic crystals, to the
best of our knowledge, only one theoretical paper has ap-
peared [24]. A possible reason is that for the 3D cases
the mathematical treatment and corresponding computa-
tion are much more complicated than that of 2D phononic
crystals. In their work, Psarobas et al. [24] investigated the
planar defects in 3D solid phononic crystals composed of
nonoverlapping lead spheres centered on the sites of an
FCC lattice. The defects were introduced by changing the
radius of spheres in one of the planes, i.e., what they stud-
ied was a defect layer in a 3D periodic system. The result
shows that the plane of impurity spheres introduces modes
of vibration localized on this plane at frequencies within
a frequency gap of a pure phononic crystal.

In the present article, we study the point defects in
3D phononic crystals. For the sake of simplicity, we con-
sider the system of water (with longitudinal velocities
cl = 1.48 km/s and density ρ = 1.0 × 103 kg/m3) spheres
with a simple-cubic (SC) array embedded in a mercury
(cl = 1.45 km/s, ρ = 13.5 × 103 kg/m3) host. The acous-
tic wave equation for a homogeneous isotropic medium of
fluid or gas can be written as [4–6]
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where λ(�r), ρ(�r) and p(�r) are the bulk modulus, the mass
density and pressure of the fluid or gas, respectively.

For the 3D fluid-fluid periodic systems, Bloch’s
theorem asserts that the pressure p(�r) can be written
as p(�r) = ei�k·�rp �K(�r), where �k is restricted within the
first Brillouin zone (BZ) and p �K(�r) is a periodic function
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Equation (2) is an infinite set of linear equations. In

practice, only a finite number of reciprocal vectors �G are
taken into account for the numerical calculation. If the
infinite series is approximated by a sum of N reciprocal
vectors, equation (2) is reduced to N × N × N matrix
eigenvalue equations. In the present paper, we use 1331
reciprocal vectors per supercell to perform the numerical
calculations. The results have shown a good convergence.
The eigenvalues do not exceed 2% by using more reciprocal
vectors in the low-frequency regime where the complete
band gaps were found.

We introduce the point defects in two ways: one is by
radius-modification, i.e., changing the radius of one of the
spheres in 3D phononic crystal, another is by replacing
one of the spheres with a cube. The theoretical analysis
of the defect modes can be carried out by the supercell

Fig. 1. Acoustic band structure with a point defect. The filling
fraction is F0 = 0.27, and defect filling fraction is Fd = 0.25F0.
A defect band with bandwidth ∆ω = 0.013c/a is shown by the
dashed line. The band gap ranges from ω = 2.99c/a to 4.05c/a.
ω is the frequency, a is the lattice constant, and c is the sound
velocity in mercury.

method that has been performed for the defects in 2D
phononic crystals [16,17] and photonic crystals [25–27].
We consider now such a system, in which the supercell
consists of 5 × 5× 5 spheres. The locations of the spheres
with one sphere of radius r (corresponding to the filling
fraction F0 = 4

3π
(

r
a

)3) are at [(2nx + 1)/2, (2ny + 1)/2,
(2nz + 1)/2], where nx, ny, nz = 0, 1, 2, 3, 4 and a is
the lattice constant. A defect located at (2.5, 2.5, 2.5) is
introduced by changing the spherical radius rd, or width
Ld of the cube in the center of the supercell (corresponding
to the defect filling fraction Fd = 4

3π
(

rd

a

)3 for the sphere

defect, and Fd =
(

Ld

a

)3
for the cubic defect). It means that

the supercell lattice has a period a′ = 5a, each supercell
is composed of 53 original cells.

We first study the defect states of the systems con-
sisting of water spheres inside a mercury host. The point
defect is introduced by changing the radius of one water
sphere located in the center of the supercell. We begin
with a perfect crystal, when the filling fraction of the reg-
ular water sphere is F0 = 0.27 the corresponding ratio of
radius r to the lattice constant a is r/a = 0.40. The numer-
ical result shows the existence of a band gap with the lower
edge at ω = 3.00c/a and the upper edge at ω = 4.05c/a,
where c is the sound velocity in mercury. Then we reduce
gradually the radius of the defect sphere. Figure 1 shows
the band structure when the defect water sphere has a dif-
ferent radius Fd = 0.25F0. One defect band with a narrow
width ∆ω = 0.013c/a can be seen within the frequency
range of the original band gap. Figure 2 shows the pres-
sure distribution of the defect state at point Γ of Figure 1
in the XY plane (z = 2.5) of the supercell. A peak of pres-
sure is found to occur at the location of the defect sphere,
and there was a very low pressure distribution along the
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Fig. 2. In the XY plane with Z = 2.5 of the supercell, the
spatial distribution of pressure P for the defect state at the Γ
point in Figure 1.

edges of the supercell. This result shows a well-isolated
spatial distribution without overlapping with other super-
cells. Almost the same pressure distribution behavior can
be obtained for other defect states.

Figure 3 shows the results of the defect midband as a
function of the defect filling fraction Fd for a given filling
fraction F0 = 0.27. When Fd = 0, the frequency of the
defect midband reaches ω = 3.56c/a. The defect band
moves towards the lower edge of the gap as the defect
filling fraction Fd increases. Eventually, the defect band
disappears when the defect filling fraction Fd > 0.12. It
infers that the defect band can appear for a small defect
filling fraction Fd, but when the defect filling fraction is
larger than a certain value (Fd = 0.12), the perturbation
is too small to create a defect mode in the band gap of
the perfect system.

In 2D phononic crystals with water rods in a mercury
host [23], we have found that the acoustic point defect
modes are sensitive to the geometry of defect rods as well
as the rest rods. For the system of water rods with a cir-
cular cross section in mercury, the two defect bands only
appear in a certain range of defect filling fractions in the
case of circular defects, while the defect midband almost
does not change for a wider range of defect filling fraction
in case of the square defect. For the system of water rods
with square cross section, the defect modes depend only
on the defect filling fraction regardless of the geometry of
defect (circular or square). So it is very interesting to see
what happens when the geometry of the defect or the reg-
ular inclusions are changed in the 3D phononic crystals.
We first examine the effect of the geometry of the defect
on defect band in the system of water spheres in mercury
(SWM) when a water cube replaces the spherical defect.
The four square symbols (�) in Figure 3 show the mid-
bands of the defect modes for ratios between edge width
(Ld) of the cubic defect and the lattice constant (a) of
Ld/a = 0.00, 0.20, 0.28, and 0.40, respectively. It can be
clearly seen that if the cubic defect has the same filling

Fig. 3. The frequencies of the defect midband as a function of
the defect filling fraction. The filling fraction is F0 = 0.27. The
solid lines indicate upper and lower edge of the band gap. The
dashed line stands for the midband of the defect mode. The
square symbols denote the defect midband of the cubic defect.

fraction as the spherical defect, there will be almost the
same defect states. This result is different from the case of
2D phononic crystals [23]. Similar results can be obtained
in the system of water cube in mercury host (CWM) with
the sphere defects as well as the cubic defects.

In conclusion, using the PWE method and supercell
calculations, we have studied the point defect states of
the 3D simple cubic arrays of water spheres in a mercury
host. The defects are created by two kinds of geometry:
one is a sphere, which has a different radius from the other
spheres, and another is a cube. The results show that the
defect band only appears in a certain range of defect filling
fractions, and will move down with increasing defect filling
fraction. For these two kinds of defects, the defect band
is only related to the defect filling fraction Fd, not the
geometry of defect (sphere or cube). Similar results can
be found in the CWM systems. The numerical results also
show that the pressure distribution of such defect states
is well localized in the vicinity of the defect.
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